Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Infect Dis ; 128: 230-243, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2165390

ABSTRACT

OBJECTIVES: Investigate risk factors for SARS-CoV-2 infections in school students and staff. METHODS: In the 2020/2021 school year, we administered polymerase chain reaction, antibody tests, and questionnaires to a sample of primary and secondary school students and staff, with data linkage to COVID-19 surveillance. We fitted logistic regression models to identify the factors associated with infection. RESULTS: We included 6799 students and 5090 staff in the autumn and 11,952 students and 4569 staff in the spring/summer terms. Infections in students in autumn 2020 were related to the percentage of students eligible for free school meals. We found no statistical association between infection risk in primary and secondary schools and reported contact patterns between students and staff in either period in our study. Using public transports was associated with increased risk in autumn in students (adjusted odds ratio = 1.72; 95% confidence interval 1.31-2.25) and staff. One or more infections in the same household during either period was the strongest risk factor for infection in students and more so among staff. CONCLUSION: Deprivation, community, and household factors were more strongly associated with infection than contacts patterns at school; this suggests that the additional school-based mitigation measures in England in 2020/2021 likely helped reduce transmission risk in schools.


Subject(s)
COVID-19 , Humans , Longitudinal Studies , SARS-CoV-2 , Risk Factors , England , Schools , Students
2.
BMC Genomics ; 23(1): 627, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2009353

ABSTRACT

Genomic surveillance and identification of COVID-19 outbreaks are important in understanding the genetic diversity, phylogeny, and lineages of SARS-CoV-2. Genomic surveillance provides insights into circulating infections, and the robustness and design of vaccines and other infection control approaches. We sequenced 57 SARS-CoV-2 isolates from a Kenyan clinical population, of which 55 passed quality checks using the Ultrafast Sample placement on the Existing tRee (UShER) workflow. Phylo-genome-temporal analyses across two regions in Kenya (Nairobi and Kiambu County) revealed that B.1.1.7 (Alpha; n = 32, 56.1%) and B.1 (n = 9, 15.8%) were the predominant lineages, exhibiting low Ct values (5-31) suggesting high infectivity, and variant mutations across the two regions. Lineages B.1.617.2, B.1.1, A.23.1, A.2.5.1, B.1.596, A, and B.1.405 were also detected across sampling sites within target populations. The lineages and genetic isolates were traced back to China (A), Costa Rica (A.2.5.1), Europe (B.1, B.1.1, A.23.1), the USA (B.1.405, B.1.596), South Africa (B.1.617.2), and the United Kingdom (B.1.1.7), indicating multiple introduction events. This study represents one of the genomic SARS-CoV-2 epidemiology studies in the Nairobi metropolitan area, and describes the importance of continued surveillance for pandemic control.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Genomics , Humans , Kenya/epidemiology , Phylogeny , SARS-CoV-2/genetics
3.
Lancet Reg Health Eur ; 21: 100471, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1996406

ABSTRACT

Background: There remains uncertainty about the epidemiology of SARS-CoV-2 among school students and staff and the extent to which non-pharmaceutical-interventions reduce the risk of school settings. Methods: We conducted an open cohort study in a sample of 59 primary and 97 secondary schools in 15 English local authority areas that were implementing government guidance to schools open during the pandemic. We estimated SARS-CoV-2 infection prevalence among those attending school, antibody prevalence, and antibody negative to positive conversion rates in staff and students over the school year (November 2020-July 2021). Findings: 22,585 staff and students participated. SARS-CoV-2 infection prevalence among those attending school was highest during the first two rounds of testing in the autumn term, ranging from 0.7% (95% CI 0.2, 1.2) among primary staff in November 2020 to 1.6% (95% CI 0.9, 2.3) among secondary staff in December 2020. Antibody conversion rates were highest in the autumn term. Infection patterns were similar between staff and students, and between primary and secondary schools. The prevalence of nucleoprotein antibodies increased over the year and was lower among students than staff. SARS-CoV-2 infection prevalence in the North-West region was lower among secondary students attending school on normal school days than the regional estimate for secondary school-age children. Interpretation: SARS-CoV-2 infection prevalence in staff and students attending school varied with local community infection rates. Non-pharmaceutical interventions intended to prevent infected individuals attending school may have partially reduced the prevalence of infection among those on the school site. Funding: UK Department of Health and Social Care.

4.
BMC Bioinformatics ; 23(1): 137, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1793990

ABSTRACT

BACKGROUND: SARS-CoV-2 virus sequencing has been applied to track the COVID-19 pandemic spread and assist the development of PCR-based diagnostics, serological assays, and vaccines. With sequencing becoming routine globally, bioinformatic tools are needed to assist in the robust processing of resulting genomic data. RESULTS: We developed a web-based bioinformatic pipeline ("COVID-Profiler") that inputs raw or assembled sequencing data, displays raw alignments for quality control, annotates mutations found and performs phylogenetic analysis. The pipeline software can be applied to other (re-) emerging pathogens. CONCLUSIONS: The webserver is available at http://genomics.lshtm.ac.uk/ . The source code is available at https://github.com/jodyphelan/covid-profiler .


Subject(s)
COVID-19 , SARS-CoV-2 , Genomics , Humans , Pandemics , Phylogeny , SARS-CoV-2/genetics
6.
Genome Med ; 13(1): 4, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1059849

ABSTRACT

During COVID-19, diagnostic serological tools and vaccines have been developed. To inform control activities in a post-vaccine surveillance setting, we have developed an online "immuno-analytics" resource that combines epitope, sequence, protein and SARS-CoV-2 mutation analysis. SARS-CoV-2 spike and nucleocapsid proteins are both vaccine and serological diagnostic targets. Using the tool, the nucleocapsid protein appears to be a sub-optimal target for use in serological platforms. Spike D614G (and nsp12 L314P) mutations were most frequent (> 86%), whilst spike A222V/L18F have recently increased. Also, Orf3a proteins may be a suitable target for serology. The tool can accessed from: http://genomics.lshtm.ac.uk/immuno (online); https://github.com/dan-ward-bio/COVID-immunoanalytics (source code).


Subject(s)
SARS-CoV-2/genetics , SARS-CoV-2/immunology , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines , Computer Simulation , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Epitopes, B-Lymphocyte/immunology , Histocompatibility Antigens Class I/immunology , Humans , Mutation , Phosphoproteins/genetics , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viroporin Proteins/genetics , Viroporin Proteins/immunology
7.
Clin Infect Dis ; 72(4): 652-660, 2021 02 16.
Article in English | MEDLINE | ID: covidwho-638980

ABSTRACT

BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) has spread worldwide and continues to threaten peoples' health as well as put pressure on the accessibility of medical systems. Early prediction of survival of hospitalized patients will help in the clinical management of COVID-19, but a prediction model that is reliable and valid is still lacking. METHODS: We retrospectively enrolled 628 confirmed cases of COVID-19 using positive RT-PCR tests for SARS-CoV-2 in Tongji Hospital, Wuhan, China. These patients were randomly grouped into a training (60%) and a validation (40%) cohort. In the training cohort, LASSO regression analysis and multivariate Cox regression analysis were utilized to identify prognostic factors for in-hospital survival of patients with COVID-19. A nomogram based on the 3 variables was built for clinical use. AUCs, concordance indexes (C-index), and calibration curves were used to evaluate the efficiency of the nomogram in both training and validation cohorts. RESULTS: Hypertension, higher neutrophil-to-lymphocyte ratio, and increased NT-proBNP values were found to be significantly associated with poorer prognosis in hospitalized patients with COVID-19. The 3 predictors were further used to build a prediction nomogram. The C-indexes of the nomogram in the training and validation cohorts were 0.901 and 0.892, respectively. The AUC in the training cohort was 0.922 for 14-day and 0.919 for 21-day probability of in-hospital survival, while in the validation cohort this was 0.922 and 0.881, respectively. Moreover, the calibration curve for 14- and 21-day survival also showed high coherence between the predicted and actual probability of survival. CONCLUSIONS: We built a predictive model and constructed a nomogram for predicting in-hospital survival of patients with COVID-19. This model has good performance and might be utilized clinically in management of COVID-19.


Subject(s)
COVID-19 , Nomograms , China/epidemiology , Humans , Prognosis , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL